dev, security

Strict-Transport-Security for *.dev

Some web developers host their pre-production development sites by configuring their DNS such that hostnames ending in .dev point to local servers. Such configurations were not meaningfully impacted when .dev became an official Generic Top Level Domain a few years back, because even as smart people warned that developers should stop squatting on it, Google (the owner of the .dev TLD) was hosting few (if any) sites on the gTLD.

With Chrome 63, shipping to the stable channel in the coming days, things have changed. Chrome has added .dev to the HSTS Preload list (along with the .foo, .page, .app, and .chrome TLDs). This means that any attempt to visit http://anything.dev will automatically be converted to https://anything.dev.

hstspreload

Other major browsers use the same underlying HSTS Preload list, and we expect that they will also pick up the .dev TLD entry in the coming weeks and months.

Of course, if you were using HTTPS with valid and trusted certificates on your pre-production sites already (good for you!) the Chrome 63 change may not impact you very much right away. But you’ll probably want to move your preproduction sites off of .dev and instead use e.g. .test, a TLD reserved for this purpose.

Secure all the things!

-Eric

PS: Perhaps surprisingly, the dotless (“plain hostnames”) http://dev/http://page/ http://app/http://chrome/ and http://foo/ are all impacted by new HSTS rules as well.

Standard
browsers, security, Uncategorized

Google Internet Authority G3

For some time now, operating behind the scenes and going mostly unnoticed, Google has been changing the infrastructure used to provide HTTPS certificates for its sites and services.

You’ll note that I said mostly. Over the last few months, I’ve periodically encountered complaints from users who try to load a Google site and get an unexpected error page:

certerror

Now, there are a variety of different problems that can cause errors like this one– in most cases, the problem is that the user has some software (security software or malware) installed locally that is generating fake certificates that are deemed invalid for various reasons.

However, when following troubleshooting steps, we’ve determined that a small number of users encountering this NET::ERR_CERT_AUTHORITY_INVALID error page are hitting it for the correct and valid Google certificates that chain through Google’s new intermediate Google Internet Authority G3. That’s weird.

What’s going on?

The first thing to understand is that Google operates a number of different certificate trust chains, and we have multiple trust chains deployed at the same time. So a given user will likely encounter some certificate chains that go through the older Google Internet Authority G2 chain and some that go through the newer Google Internet Authority G3 chain– this isn’t something the client controls.

G2vG3

You can visit this GIA G3-specific test page to see if the G3 root is properly trusted by your system.

More surprisingly, it’s also the case that you might be getting a G3 chain for a particular Google site (e.g. https://mail.google.com) while some other user is getting a G2 chain for the same URL. You might even end up with a different chain simply based on what Google sites you’ve visited first, due to a feature called HTTP/2 connection coalescing.

In order to see the raw details of the certificate encountered on an error page, you can click the error code text on the blocking page. (If the site loaded without errors, you can view the certificate like so).

Google’s new certificate chain is certainly supposed to be trusted automatically– if your operating system (e.g. Windows 7) didn’t already have the proper certificates installed, it’s expected to automatically download the root certificate from the update servers (e.g. Microsoft WindowsUpdate) and install it so that the certificate chain is recognized as trusted. In rare instances, we’ve heard of this process not working– for instance, some network administrators have disabled root certificate updates for their enterprise’s PCs.

On modern versions of Windows, you can direct Windows to check its trusted certificate list against the WindowsUpdate servers by running the following from a command prompt:

certutil -f -verifyCTL AuthRootWU

Older versions of Windows might not support the -verifyCTL command. You might instead try downloading the R2 GlobalSign Root Certificate directly and then installing it in your Trusted Root Certification Authorities:

InstallBtnLocalMachineTrustedRootFinishyay

Overall, the number of users reporting problems here is very low, but I’m determined to help ensure that Chrome and Google sites work for everyone.

-Eric

Standard
browsers, security

Chrome Field Trials

Back in April, we announced:

Beginning in October 2017, Chrome will show the “Not secure” warning in two additional situations: when users enter data on an HTTP page, and on all HTTP pages visited in Incognito mode.

This is true, but it’s perhaps a little misleading, based on some of the tweets we’ve seen:

Screen Shot 2017-10-18 at 8.05.25 AM

What isn’t mentioned in the blog post is exactly how this feature will roll out– many readers naturally assume that it’s as simple as: “If you have Chrome 62, then this feature is present.” After all, that’s how software usually works.

In Chrome, things are more interesting. Where possible, Chrome rolls out new features dynamically using the Field Trials platform. You can think of Field Trials as a set of server-controlled flags that allow Google to change Chrome’s behavior dynamically, at runtime, without shipping a new version.

We use Field Trials for two major purposes– for experimentation, and for feature rollouts.

Experimentally, we run many experiments where we create one or more experimental groups and then compare telemetry from those clients against a control group. If a feature isn’t performing as expected (e.g. its usage declines vs. the feature it replaces, or browser crashes increase, or memory usage increases or page load slows, etc), the feature is tuned or removed before it officially “ships.” Experiments are often conducted on the pre-release channels (e.g. Canary, Dev, and Beta) before deciding whether or not a feature should be rolled out to the Stable channel.

After a feature has proven itself via experiments, it’s ready to roll out to users in the Stable channel. Unfortunately, pre-release channels don’t get coverage nearly as broad as we’d like, so we have to take care when a feature is first rolled out to Stable. By using a field trial, we can enable the new feature for a huge number of Stable users while still keeping it at a low percentage of the Stable user base (e.g. 1% of a billion installs == 10 million clients). We keep an eagle eye on telemetry and user-feedback reports to spot any unexpected problems, and assuming we don’t find any, we can quickly ramp up the new feature rollout to 100% of users. If we discover the feature wasn’t fit to ship for whatever reason (e.g. introduces some serious bug), we can dial it back to 0% until a fix can be created.

Unfortunately, field trials are one of the very few inscrutable parts of the otherwise veryopen Chrome– Google does not publish information about the current percentage of users in a trial, and while chrome://version/ shows which trials are currently enabled for a given client, there’s no public mapping of the Variations tokens to the actual trials they control.

Rest assured that I’m eager to push the new Not Secure warnings to 100% and I expect to get to do so very soon. If you just can’t wait, you can override the field trial and turn it on yourself by changing chrome://flags/#mark-non-secure-as and restarting Chrome.

Screen Shot 2017-10-18 at 8.22.16 AM

Note that there’s not a 1:1 correspondence between Flags and Field Trials– while many trials can be overridden by flags, not all experiments have user-toggleable flags. If a feature is controlled by a flag and a field trial, when a flag hasn’t been manually configured, the field trial’s setting (if any) is not reflected in chrome://flags… the flag entry will just show Default.

Protecting your web traffic as fast as we can,

-Eric

Standard
browsers, security, Uncategorized

Stealing your own password is not a vulnerability

By far, the most commonly-reported “vulnerability” reported to the Chrome Vulnerability Rewards program boils down to “I can steal my own password.” Despite having its very own FAQ entry, this gets reported to the VRP at varying levels of breathlessness, sometimes multiple times per day.

You can see this “attack” in action:

UnmaskPassword

Yes, it’s true, you can use Chrome to steal your own password.

You can also grab a knife and stab yourself in the leg. I wonder how often knife-makers get letters to that effect?

-Eric

Standard
browsers, security

Chrome 59 on Mac and TeletexString Fields

Update: This change ended up getting backed out, after it was discovered that it impacted smartcard authentication. Thanks for self-hosting Chrome Dev builds, IT teams!

A change quietly went into Chrome 59 that may impact your certificates if they contain non-ASCII characters in a TeletexString field. Specifically, these certificates will fail to validate on Mac, resulting in either a ERR_SSL_SERVER_CERT_BAD_FORMAT error for server certificates or a ERR_BAD_SSL_CLIENT_AUTH_CERT error for client certificates. The change that rejects such certificates is presently only in the Mac version of Chrome, but it will eventually make its way to other platforms.

You can see whether your certificates are using teletexStrings using an ASN.1 decoder program, like this one. Simply upload the .CER file, and look for the TeletexString type in the output. If you find any such fields that contain non-ASCII characters, the certificate is impacted:

Non-ASCII character in string

Background: Certificates are encoded using a general-purpose data encoding scheme called ASN.1. ASN.1 specifies encoding rules, and strings may be encoded using any of a number of different data types (teletexString, printableString, universalString, utf8String, bmpString). Due to the complexity and underspecified nature of the TeletexString, as well as the old practice of shoving Latin1 strings in fields marked as TeletexString, the Chrome change takes a conservative approach to handling TeletexString, only allowing the ASCII subset. utf8String is a well-specified and well-supported standard and should be used in place of the obsolete teletexString type.

To correct the problem with the certificate, regenerate it using UTF8String fields to store non-ASCII data.

-Eric Lawrence

Standard
browsers, security

Get Help with HTTPS problems

Sometimes, when you try to load a HTTPS address in Chrome, instead of the expected page, you get a scary warning, like this one:

image

Chrome has found a problem with the security of the connection and has blocked loading the page to protect your information.

In a lot of cases, if you’re just surfing around, the easiest thing to do is just find a different page to visit. But what happens if this happens on an important site that you really need to see? You shouldn’t just “click through” the error, because this could put your device or information at risk.

In some cases, clicking the ADVANCED link might explain more about the problem. For instance, in this example, the error message says that the site is sending the wrong certificate; you might try finding a different link to the site using your favorite search engine.

image

Or, in this case, Chrome explains that the certificate has expired, and asks you to verify that your computer clock’s Date and Time are set correctly:

image

You can see the specific error code in the middle of the text:

image

Some types of errors are a bit more confusing. For instance, NET::ERR_CERT_AUTHORITY_INVALID means that the site’s certificate didn’t come from a company that your computer is configured to trust.

image

GooGle InternEt Authority G3?

If the root certificate is from Google Internet Authority G3, see this article.

Errors Everywhere?

What happens if you start encountering errors like this on every HTTPS page that you visit, even major sites like https://google.com?

In such cases, this often means that you have some software on your device or network that is interfering with your secure connections. Sometimes this software is well-meaning (e.g. anti-virus software, ad-blockers, parental control filters), and sometimes it’s malicious (adware, malware, etc). But even buggy well-meaning software can break your secure connections.

If you know what software is intercepting your traffic (e.g. your antivirus) consider updating it or contacting the vendor.

Getting Help

If you don’t know what to do, you may be able to get help in the Chrome Help Forum. When you ask for help, please include the following information:

  • The error code (e.g. NET::ERR_CERT_AUTHORITY_INVALID).
    • To help the right people find your issue, consider adding this to the title of your posting.
  • What version of Chrome you’re using. Visit chrome://version in your browser to see the version number
  • The type of device and network (e.g. “I’m using a laptop on wifi on my school’s network.”)
  • The error diagnostic information.

You can get diagnostic information by clicking or tapping directly on the text of the error code: image. When you do so, a bunch of new text will appear in the page:

image

You should select all of the text:

image

…then hit CTRL+C (or Command ⌘+C on Mac) to copy the text to your clipboard. You can then paste the text into your post. The “PEM encoded chain” information will allow engineers to see exactly what certificate the server sent to your computer, which might shed light on what specifically is interfering with your secure connections.

With any luck, we’ll be able to help you figure out how to surf securely again in no time!

 

-Eric

Standard