browsers, perf, privacy, security

Private Mode Browsers

InPrivate Mode was introduced in Internet Explorer 8 with the goal of helping users improve their privacy against both local and remote threats. Safari introduced a privacy mode in 2005.

All leading browsers offer a “Private Mode” and they all behave in the same general ways.

HTTP Caching

While in Private mode, browsers typically ignore any previously cached resources and cookies. Similarly, the Private mode browser does not preserve any cached resources beyond the end of the browser session. These features help prevent a revisited website from trivially identifying a returning user (e.g. if the user’s identity were cached in a cookie or JSON file on the client) and help prevent “traces” that might be seen by a later user of the device.

In Firefox’s and Chrome’s Private modes, a memory-backed cache container is used for the HTTP cache, and its memory is simply freed when the browser session ends. Unfortunately, WinINET never implemented a memory cache, so in Internet Explorer InPrivate sessions, data is cached in a special WinINET cache partition on disk which is “cleaned up” when the InPrivate session ends.

Because this cleanup process may be unreliable, in 2017, Edge made a change to simply disable the cache while running InPrivate, a design decision with significant impact on the browser’s network utilization and performance. For instance, consider the scenario of loading an image gallery that shows one large picture per page and clicking “Next” ten times:

InPrivateVsRegular

Because the gallery reuses some CSS, JavaScript, and images across pages, disabling the HTTP cache means that these resources must be re-downloaded on every navigation, resulting in 50 additional requests and a 118% increase in bytes downloaded for those eleven pages. Sites that reuse even more resources across pages will be more significantly impacted.

Another interesting quirk of Edge’s InPrivate implementation is that the browser will not download FavIcons while InPrivate. Surprisingly (and likely accidentally), the suppression of FavIcon downloads also occurs in any non-InPrivate windows so long as any InPrivate window is open on the system.

Web Platform Storage

Akin to the HTTP caching and cookie behaviors, browsers running in Private mode must restrict access to HTTP storage (e.g. HTML5 localStorage, ServiceWorker/CacheAPI, IndexedDB) to help prevent association/identification of the user and to avoid leaving traces behind locally. In some browsers and scenarios, storage mechanisms are simply set to an “ephemeral partition” while in others the DOM APIs providing access to storage are simply configured to return “Access Denied” errors.

You can explore the behavior of various storage mechanisms by loading this test page in Private mode and comparing to the behavior in non-Private mode.

Within IE and Edge’s InPrivate mode, localStorage uses an in-memory store that behaves exactly like the sessionStorage feature. This means that InPrivate’s storage is (incorrectly) not shared between tabs, even tabs in the same browser instance.

Network Features

Beyond the typical Web Storage scenarios, browser’s Private Modes should also undertake efforts to prevent association of users’ Private instance traffic with non-Private instance traffic. Impacted features here include anything that has a component that behaves “like a cookie” including TLS Session Tickets, TLS Resumption, HSTS directives, TCP Fast Open, Token Binding, ChannelID, and the like.

Automatic Authentication

In Private mode, a browser’s AutoComplete features should be set to manual-fill mode to prevent a “NameTag” vulnerability, whereby a site can simply read an auto-filled username field to identify a returning user.

On Windows, most browsers support silent and automatic authentication using the current user’s Windows login credentials and either the NTLM and Kerberos schemes. Typically, browsers are only willing to automatically authenticate to sites on “the Intranet“. Some browsers behave differently when in Private mode, preventing silent authentication and forcing the user to manually enter or confirm an authentication request.

In Firefox Private Mode and Edge InPrivate, the browser will not automatically respond to a HTTP/401 challenge for Negotiate/NTLM credentials.

In Chrome Incognito, Brave Incognito, and IE InPrivate, the browser will automatically respond to a HTTP/401 challenge for Negotiate/NTLM credentials even in Private mode.

Notes:

  • In Edge, the security manager returns MustPrompt when queried for URLACTION_CREDENTIALS_USE.
  • Unfortunately Edge’s Kiosk mode runs InPrivate, meaning you cannot easily use Kiosk mode to implement a display that projects a dashboard or other authenticated data on your Intranet.
  • For Firefox to support automatic authentication at all, the
    network.negotiate-auth.allow-non-fqdn and/or network.automatic-ntlm-auth.allow-non-fqdn preferences must be adjusted.

Detection of Privacy Modes

While browsers generally do not try to advertise to websites that they are running inside Private modes, it is relatively easy for a website to feature-detect this mode and behave differently. For instance, some websites like the Boston Globe block visitors in Private Mode (forcing login) because they want to avoid circumvention of their “Non-logged-in users may only view three free articles per month” paywall logic.

Sites can detect privacy modes by looking for the behavioral changes that signal that a given browser is running in Private mode; for instance, indexedDB is disabled in Edge while InPrivate. Detectors have been built for each browser and wrapped in simple JavaScript libraries. Defeating Private mode detectors requires significant investment on the part of browsers (e.g. “implement an ephemeral mode for indexedDB”) and as a consequence most browsers have punted on this problem for the time being.

Advanced Private Modes

Generally, mainstream browsers have taken a middle ground in their privacy features, trading off some performance and some convenience for improved privacy. Users who are very concerned about maintaining privacy from a wider variety of threat actors need to take additional steps, like running their browser in a discardable Virtual Machine behind an anonymizing VPN/Proxy service, disabling JavaScript entirely, etc.

The Brave Browser offers a “Private Window with Tor” feature that routes traffic over the Tor anonymizing network; for many users this might be a more practical choice than the highly privacy-preserving Tor Browser Bundle, which offers additional options like built-in NoScript support to help protect privacy.

 

-Eric

Standard
browsers, security, storytelling

An Update on the Edge XSS Filter

In Windows 10 RS5 (aka the “October 2018 Update”), the venerable XSS Filter first introduced in 2008 with IE8 was removed from Microsoft Edge. The XSS Filter debuted in a time before Content Security Policy as a part of a basket of new mitigations designed to mitigate the growing exploitation of cross-site scripting attacks, joining older features like HTTPOnly cookies and the sandbox attribute for IFRAMEs.

The XSS Filter feature was a difficult one to land– only through the sheer brilliance and dogged persistence of its creator (David Ross) did the IE team accept the proposal that a client-side filtering approach could be effective with a reasonable false positive rate and good-enough performance to ship on-by-default. The filter was carefully tuned, firing only on cross-site navigation, and in need of frequent updates as security researchers inside and outside the company found tricks to bypass it. One of the most significant technical challenges for the filter concerned how it was layered into the page download pipeline, intercepting documents as they were received as raw text from the network. The filter relied evaluating dynamically-generated regular expressions to look for potentially executable markup in the response body that could have been reflected from the request URL or POST body. Evaluating the regular expressions could prove to be extremely expensive in degenerate cases (multiple seconds of CPU time in the worst cases) and required ongoing tweaks to keep the performance costs in check.

In 2010, the Chrome team shipped their similar XSS Auditor feature, which had the luxury of injecting its detection logic after the HTML parser runsdetecting and blocking reflections as they entered the script engine. By throttling closer to the point of vulnerability, its performance and accuracy is significantly improved over the XSS Filter.

Unfortunately, no matter how you implement it, clientside XSS filtration is inherently limited– of the four classes of XSS Attack, only one is potentially mitigated by clientside XSS filtration. Attackers have the luxury of tuning their attacks to bypass filters before they deploy them to the world, and the relatively slow ship cycles of browsers (6 weeks for Chrome, and at least a few months for IE of the era) meant that bypasses remained exploitable for a long time.

False positives are an ever-present concern– this meant that the filters have to be somewhat conservative, leading to false-negative bypasses (e.g. multi-stage exploits that performed a same-site navigation) and pronouncements that certain attack patterns were simply out-of-scope (e.g. attacks encoded in anything but the most popular encoding formats).

Early attempts to mitigate the impact of false positives (by default, neutering exploits rather than blocking navigation entirely) proved bypassable and later were abused to introduce XSS exploits in sites that would otherwise be free of exploit (!!!). As a consequence, browsers were forced to offer options that would allow a site to block navigation upon detection of a reflection, or disable the XSS filter entirely.

Surprisingly, even in the ideal case, best-of-class XSS filters can introduce information disclosure exploits into sites that are free of XSS vulnerabilities. XSS filters work by matching attacker-controlled request data to text in a victim response page, which may be cross-origin. Clientside filters cannot really determine whether a given string from the request was truly reflected into the response, or whether the string is naturally present in the response. This shortcoming creates the possibility that such a filter may be abused by an attacker to determine the content of a cross-origin page, a violation of Same Origin Policy. In a canonical attack, the attacker frames a victim page with a string of interest in it, then attempts to determine that string by making a series of successive guesses until it detects blocking by the XSS filter. For instance, xoSubframe.contentWindow.length exposes the count of subframes of a frame, even cross-origin. If the XSS filter blocks the loading of a frame, its subframe count is zero and the attacker can conclude that their guess was correct.

In Windows 10 RS4 (April 2018 update), Edge shipped its implementation of the Fetch standard, which redefines how the browser downloads content for page loads. As a part of this massive architectural shift, a regression was introduced in Edge’s XSS Filter that caused it to incorrectly determine whether a navigation was cross-origin. As a result, the XSS Filter began running its logic on same-origin navigations and skipping processing of cross-origin navigations, leading to a predictable flood of bug reports.

In the process of triaging these reports and working to address the regression, we concluded that the XSS Filter had long been on the wrong side of the cost/benefit equation and we elected to remove the XSS Filter from Edge entirely, matching Firefox (which never shipped a filter to begin with).

We encourage sites that are concerned about XSS attacks to use the client-side platform features available to them (Content-Security-Policy, HTTPOnly cookies, sandboxing) and the server-side patterns and frameworks that are designed to mitigate script injection attacks.

-Eric Lawrence

Standard
browsers, dev

Streaming Audio in Edge

This issue report complains that Edge doesn’t stream AAC files and instead tries to download them. It notes that, in contrast, URLs that point to MP3s result in a simple audio player loading inside the browser.

Edge has always supported AAC so what’s going on?

The issue here isn’t about AAC, per-se; it’s instead about whether or not the browser, upon direct navigation to an audio stream, will accommodate that by generating a wrapper HTML page with an <audio> element pointed at that audio stream URL.

PlaceholderPage

A site that wants to play streaming AAC in Edge (or, frankly, any media type, for any browser) should consider creating a HTML page with an appropriate Audio or Video element pointed at the stream.

The list of audio types for which Edge will automatically generate a wrapper page does not include AAC:

audio/mp4, audio/x-m4a, audio/mp3, audio/x-mp3, audio/mpeg,
audio/mpeg3, audio/x-mpeg, audio/wav, audio/wave, audio/x-wav,
audio/vnd.wave, audio/3gpp, audio/3gpp2

In contrast, Chrome creates the MediaDocument page for a broader set of known audio types:

static const char* const kStandardAudioTypes[] = {
 "audio/aac",  "audio/aiff", "audio/amr",  "audio/basic",  "audio/flac",
 "audio/midi",  "audio/mp3",  "audio/mp4",  "audio/mpeg",  "audio/mpeg3", 
 "audio/ogg", "audio/vorbis",  "audio/wav",  "audio/webm",  "audio/x-m4a",
 "audio/x-ms-wma",  "audio/vnd.rn-realaudio",  "audio/vnd.wave"};

If the the response sends Content-Type: application/octet-stream, includes a Content-Dispostion: attachment, or puts a download attribute on the anchor <a> element that leads to the media, Edge will download the media file instead of playing it in the browser.

Note: In Windows 10 RS5, the extension model is capable enough that it’s possible to write a browser extension that intercepts navigation directly to audio/video Media types and renavigates to a wrapper page. [Sample code]

-Eric

PS: Edge has similar special handling for video types:

"application/mp4","video/mp4","video/x-m4v","video/3gpp",
"video/3gpp2","video/quicktime"

 

Standard
browsers

Cookie Limits

I’ve been writing about Cookies a lot recently, and also did so almost a decade ago.

Edge/IE cookie limits

The June 1018 Cumulative Updates increased the per-domain cookie limit from 50 to 180 for IE and Edge across Windows 7, Windows 8.1, and Windows 10 (TH1 to RS2). This higher limit matches Chrome’s cookie jar.

In IE/Edge, if the cookie length exceeds 10240 characters, document.cookie returns an empty string. (Cookies over 1023 characters can also lead to an empty document.cookie string in the event of a race condition). Cookie strings longer than 10KB will still be sent to the server in the Cookie request header, although many servers will reject headers over 16kb in size.

In IE/Edge, the browser will ignore attempts to set (and suppress attempts to send) individual cookies (`​name=value`) over 5118 characters in length.

Test Page

At the time of this writing, there’s a nice test page that attempts to exercise cookie limits using the DOM.

Standard
browsers, privacy, tech, web

Cookie Controls, Revisited

Update: The October 2018 Cumulative Security Update (KB4462919) brings the RS5 Cookie Control changes described below to Windows 10 RS2, RS3, and RS4.

Cookies are one of the most crucial features in the web platform, and large swaths of the web don’t work properly without them. Unfortunately, cookies are also one of the primary mechanisms that trackers and ad networks utilize to follow users around the web, potentially impacting users’ privacy. To that end, browsers have offered cookie controls for over twenty years.

Back in 2010, I wrote a summary of Internet Explorer’s Cookie Controls. IE’s cookie controls were very granular and quite powerful. The basic settings were augmented with P3P, a once-promising feature that allowed sites to advertise their privacy practices and browsers to automatically enforce users’ preferences against cookies. Unfortunately, major sites created fraudulent P3P statements, regulators failed to act, and the entire (complicated) system collapsed. P3P was removed from IE11 on Windows 10 and never implemented in Microsoft Edge.

Instead, Edge offers a very simple cookie control in the Privacy and Security section of the settings. Under the Cookies option, you have three choices: Don’t block cookies (the default), Block all cookies, and Block only third party cookies:

CookieSetting

This simple setting hides a bunch of subtlety that this post will explore.

Cookie => Cookie-Like

For the October 2018 update (aka “Redstone Five” aka “RS5”) we’ve made some important changes to Edge’s Cookie control.

The biggest of the changes is that Edge now matches other browsers, and uses the cookie controls to restrict cookie-like storage mechanisms, including localStoragesessionStorageindexedDB, Cache API, and ServiceWorkers. Each of these features can behave much like a cookie, with a similar potential impact on users’ privacy.

While we didn’t change the UI, it would be accurate to change it to:

CookieLike

This change improves privacy and can even improve site compatibility. During our testing, we were surprised to discover that some website flows fail if the browser blocks only 3rd party cookies without also blocking 3rd-party localStorage. This change brings Edge in line with other browsers with minor exceptions. For example, in Firefox 62, when 3rd-party site data is blocked, sessionStorage is still permitted in a 3rd-party context. In Edge RS5 and Chrome, 3rd party sessionStorage is blocked if the user blocks 3rd-party cookies.

Block Setting and Sending

Another subtlety exists because of the ambiguous terminology “third-party cookie.” A cookie is just a cookie– it belongs to a site (eTLD+1). Where the “party” comes into play is the context where the cookie was set and when it is sent.

In the web platform, unless a browser implements restrictions:

  • A cookie set in a first-party context will be sent to a first-party context
  • A cookie set in a first-party context will be sent to a third-party context
  • A cookie set in a third-party context will be sent to a first party context
  • A cookie set in a third-party context will be sent to a third-party context

For instance, in this sample page, if the IFRAME and IMG both set a cookie, these cookies are set in a third-party context:Contexts

  • If the user subsequently visits domain2.com, the cookie set by that 3rd-Party IFRAME will now be sent to the domain2.com server in a 1st-Party context.
  • If the user subsequently visits domain3.com, the cookie set by that 3rd-Party IMG will now be sent to the domain3.com server in a 1st-Party context.

Historically, Edge and IE’s “Block 3rd party cookies” options controlled only whether a cookie could be set from a 3rd party context, but did not impact whether a cookie initially set in a 1st party context would be sent to a 3rd party context.

As of Edge RS5, setting “Block only 3rd party cookies” will now also block cookies that were set in a 1st party context from being sent in a 3rd-party context. This change is in line with the behavior of other browsers.

Edge Controls Impacted By Zones

With the move from Internet Explorer to Edge, the Windows Security Zones architecture was largely left by the wayside.

Zones

However, cookie controls are one of a small number of exceptions to this; Edge applies the cookie restrictions only in the Internet Zone, the zone almost all sites fall into (outside of users on corporate networks).

Perhaps surprisingly, cookie-like features and the document.cookie getter are restricted, even in the Intranet and Trusted zones.

Chrome and Firefox do not take Windows Security Zones into account when applying cookie policies.

Test Cases

I’ve updated my old “Cookies” test page with new storage test cases. You can set your browser’s privacy controls:

Block3rdPartyChrome

Block3rdPartyFF

…then visit the test page to see how the browser limits features from 3rd-party contexts. You can use the Swap button on the page to swap 1st-party and 3rd-party contexts to see how restrictions have been applied. You should see that the latest versions of Chrome, Firefox, and Edge all behave pretty much the same way.

One interesting exception is that when configured to Block 3rd-party Cookies, Edge still allows 3rd-party contexts to delete their own cookies. (This is used by federated logout pages, for instance). Chrome does not allow deletion in this scenario– the attempt to delete cookies is ignored.

 

-Eric


Appendix: Chromium Audit

In the course of our site-compatibility investigations, I had a look at Chromium’s behavior with regard to their cookie controls. In Chromium, Blink asks the host application for permission to use various storages, and these chokepoints check:

cookie_settings_->IsCookieAccessAllowed(origin_url, top_origin_url);

…which is sensitive to the various “Block Cookies” settings.

Mojo messages come up through renderer_host/chrome_render_message_filter.cc, gating access to

Additionally, ChromeContentBrowserClient gates

Elsewhere, IsCookieAccessAllowed is used to limit:

  • Flash Storage (PP_FLASHLSORESTRICTIONS_BLOCK)
  • Client Hints

Of these, Edge does not support WebSQL, FileSystem, SharedWorker, or Client Hints.

Standard
browsers, fiddler

Firefox and Fiddler – Easier than Ever

In a world where software and systems seem to march inexorably toward complexity, I love it when things get simpler.

Years ago, Firefox required non-obvious configuration changes to even send traffic to Fiddler. Eventually, Mozilla changed their default behavior on Windows to adopt the system’s proxy, meaning that Firefox would automatically use Fiddler when it was attached, just like Chrome, IE, Edge and other major browsers.

Unlike other browsers, Firefox also has its own Trusted Root Certificates store, which means that if you attempt to load a HTTPS page through Firefox with Fiddler’s HTTPS Decryption Mode enabled, you’ll get an error page:

FirefoxMITMDetected
MOZILLA_PKIX_ERROR_MITM_DETECTED error page

To configure Firefox to trust Fiddler’s root certificate, you used to have to manually install it by opening the FiddlerRoot.cer file, ticking the “Trust this CA to identify websites” box, and clicking OK:

FirefoxCA
The old way: Manually trusting Fiddler’s certificate

Making matters more annoying, any time you reset Fiddler’s root certificates (e.g. using the Actions button inside Tools > Fiddler Options > HTTPS), you had to do the whole dance over again. If you wanted to remove the obsolete root certificates, you had to visit a buried configuration UI:

ManualTrustFF
The old way: Administering the Firefox Certificate Store

Yesterday, I was delighted to learn that Firefox added a better option way back in Firefox 49. Simply visit about:config in Firefox and toggle the security.enterprise_roots.enabled setting to true.

FirefoxEnterprise
Enable the new hotness in about:config

After you make this change, Firefox will automatically trust certificates chained to roots in the Windows Trusted Root Certificate store, just like Chrome, Edge, IE and other browsers. Unfortunately, Mozilla has declined to turn this on by default, but it’s still a great option.

 

-Eric

Standard
browsers, design, privacy

Chrome Sync

Disclaimer: Hi. I’m an engineer on the Edge browser now, but worked on Chrome Security for a bit over two years. I speak for no one but myself, and I share no internal or confidential information in this post.

Update: The Chrome team announced upcoming changes based on user-feedback.

This weekend, there were a bunch of breathless articles and blogs about a very small change recently made to Chrome. Some of the claims are correct and carefully thought out, but in the swirl of clickbait and confusion, there are a bunch of inaccurate claims as well.

What Changed?

No, Chrome doesn’t “upload your browser history when you check GMail”… unless you tell it to do so.

Yes, Chrome has streamlined the opt-in to the browser’s “Sync” features, such that you no longer need to individually type your username and password when enabling Sync. Whether you consider this “Convenient!” or “Terrible!” is a matter of perception and threat model.

Screenshots

Because many people haven’t seen this change yet, here are some screenshots from Chrome 71.3558.

When you sign into a Google site or service in the browser’s HTML content area, your avatar/profile picture will now appear in the browser UI. If you click on your avatar, a flyout appears offering to enable sync:

Meeple

Similarly, if you use certain browser features that are more valuable with Sync (e.g. creating a bookmark or storing a password), the UI offers to turn on Sync:

OptIn

(Concern: This “Sync as Eric” button appears in the same X,Y location as the “Save Password” button on the preceding flyout/bubble, so you could conceivably click it by accident.)

Bookmark

If you click on one of these options to turn on Sync, a giant flyout appears to tell you what this means:

Get Google smarts

Interestingly/Concerningly, if you click “Settings”, it’s interpreted as “Yes, and show Settings“:

SettingsMeansYes

If you look through the Sync settings (also available by visiting chrome://settings/?search=sync), you’ll get a rich list of controls for what you can choose to sync:

SyncMain

Below that list, you can also find a list of all of the other ways (independent of Sync/Signin) that Chrome can talk back to Google:

OtherSettings

Change Your Mind? Disable Sync

If you change your mind after enabling Sync, or enabled it by accident, it’s easy to change. Click your Avatar and click on the “Syncing to” badge. Then click Turn off. Decide whether or not you want to keep local copies of the data that was sync’d to the server:

TurnOffSync

Note: If you accidentally signed into Chrome and enabled Sync on a device you borrowed from someone else, it’s very important that you check the box to clear local data when you’re done with it, or your information will be left behind on the device.

Fun Stuff for Nerds

If you’re a geek and are interested to better understand how Sync Works, visit the URL chrome://sync-internals/ in Chrome. You can see events in the Sync process and tons of data about what exactly is syncing.

CoolData

Opt-Out

If you don’t want Chrome to Sync, just don’t click buttons that offer to enable it.

Arguably, enabling Sync is now so streamlined that you could conceivably do it by accident (or someone borrowing your PC could do it for you).

If you’re concerned about sign-in to Chrome and want to ensure that you don’t ever activate Sync by accident, you can set a Policy inside HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Google\Chrome:

Regedit

You can set the Windows policy by simply importing this registry script.

After Sync is disabled, buttons asking to turn on Sync disappear, and (interestingly) if you try to sign into Chrome, a warning notice appears:

SyncDisabled

Motivations

Many of the articles that came out this weekend were rife with speculation that this is some new attempt from Google to erode your privacy by vacuuming up even more of your browsing data.

I don’t work for Google and I have no insider knowledge, but I think such attributions are incorrect. I think the correct explanations are much more mundane:

  1. The old UX was just really weird for humans. “Wait, you computer nerds are telling me that I just signed into Google using Google Chrome in the browser content area and now you’re telling me that I need to sign into the Google Chrome Browser using the browser chrome. WTF?!?”
  2. The old UX was dangerously misleading for people who share computers, a worryingly common practice.The new UX makes it at least a bit more clear that if you’re browsing on a borrowed computer, you really should be using a discardable Guest profile.(I think Guest Profiles are one of the coolest little-used features in Chrome).
  3. The new UX streamlines the enabling of Chrome Sync. Chrome Sync provides advantages to both the user and Google.

The Advantage to the User is that their satisfaction with the browser is higher. On average, satisfaction increases when Sync is on because the browser can do more for the user, better protecting them from phishing sites (via the password manager) and sharing their bookmarks, permission settings, etc on every device they use. Users with many devices (me) are especially excited about this benefit– I have enough to remember and configure, and I want my browser to help as much as it can.

The Obvious Advantage to Google is that users who are more satisfied with Chrome are more likely to use Chrome and not switch to some other browser. Chrome is simply stickier because switching to a browser that doesn’t have access to all of the user’s stored passwords, bookmarks, settings, etc, is less appealing.

In a world where browsers are shells around commoditized HTML parsers and script engines (E.g. compare Brave vs. Chrome), sticky features like sync are critical to marketshare. Consider, for instance, Chrome on iOS. It runs atop Apple’s WkWebView and is by-(Apple’s)-design intrinsically inferior in almost every way to the native Safari. Except for one thing… Chrome has my settings and data and Safari doesn’t. So I’ll go out of my way to get Chrome on iOS because, to me, Sync is critical time-saver that Safari can never match, because Safari doesn’t run on Windows and Chrome does. iOS represents a potentially addressable browser market of around a billion devices.

The Possible Unobvious Advantages to Google are what worry the skeptics and fearmongers– what if Google uses my data for something evil? Evil might range from a little evil (showing me ads for Beanie Babies because it sees I’m browsing a lot of Beanie Baby sites) to a lot evil (giving my data to “the Government” or my insurance company or my boss or some other bad person). Similarly, they could start using it recklessly (having my Google Home ask in front of my dinner guests “Hey, Eric, want to continue your search for the best Beanie Baby sales?“).

I personally don’t have significant concerns on this front (I got to see how seriously privacy is taken inside of Google and Chrome), but some people do.

My threat model is not your threat model.

If Evil Google is in your threat model, you can set an option to encrypt your sync data such that only your local Chrome instances can see it:

EncryptSync

If Extra Evil Google is in your threat model, you shouldn’t be using Chrome at all, because obviously Extra Evil Google could just backdoor Chrome before encryption or after decryption.

-Eric

PS: A helpful thread from a Chrome area owner.

Update: The Chrome team announced upcoming changes based on user-feedback.

Standard